Preorder Information Based Attributes' Weights Learning in Multi-attribute Decision Making
نویسندگان
چکیده
Choquet integral, as an adequate aggregation operator, extends the weighted mean operator by considering interactions among attributes. Choquet integral has been widely used in many real multi-attribute decision making. Weights (fuzzy measures) of attribute sets directly affect the decision results in multi-attribute decision making. In this paper, we aim to propose an objective method based on granular computing for determining the weights of the attribute sets. To address this issue, we first analyze the implied preorder relations under four evaluation forms and construct the corresponding preorder granular structures. Then, we define fuzzy measure of an attribute set by the similarity degree between a special preorder pairs. Finally, we employ two numerical examples for illustrating the feasibility and effectiveness of the proposed method. It is deserved to point out that the weight of each attribute subset can be learned from a given data set by the proposed method, not but be given subjectively by the decision maker. This idea provides a new perspective for multi-attribute decision making.
منابع مشابه
MULTI-ATTRIBUTE DECISION MAKING METHOD BASED ON BONFERRONI MEAN OPERATOR and possibility degree OF INTERVAL TYPE-2 TRAPEZOIDAL FUZZY SETS
This paper proposes a new approach based on Bonferroni mean operator and possibility degree to solve fuzzy multi-attribute decision making (FMADM) problems in which the attribute value takes the form of interval type-2 fuzzy numbers. We introduce the concepts of interval possibility mean value and present a new method for calculating the possibility degree of two interval trapezoidal type-2 fuz...
متن کاملDesigning a model of intuitionistic fuzzy VIKOR in multi-attribute group decision-making problems
Multiple attributes group decision making (MAGDM) is regarded as the process of determining the best feasible solution by a group of experts or decision makers according to the attributes that represent different effects. In assessing the performance of each alternative with respect to each attribute and the relative importance of the selected attributes, quantitative/qualitative evaluations ar...
متن کاملMultiple attribute group decision making with linguistic variables and complete unknown weight information
Interval type-2 fuzzy sets, each of which is characterized by the footprint of uncertainty, are a very useful means to depict the linguistic information in the process of decision making. In this article, we investigate the group decision making problems in which all the linguistic information provided by the decision makers is expressed as interval type-2 fuzzy decision matrices where each of ...
متن کاملSensitivity Analysis of Simple Additive Weighting Method (SAW): The Results of Change in the Weight of One Attribute on the Final Ranking of Alternatives
Most of data in a multi-attribute decision making (MADM) problem are unstable and changeable, then sensitivity analysis after problem solving can effectively contribute to making accurate decisions. This paper provides a new method for sensitivity analysis of MADM problems so that by using it and changing the weights of attributes, one can determine changes in the final results of a decision ma...
متن کاملSensitivity Analysis of TOPSIS Technique: The Results of Change in the Weight of One Attribute on the Final Ranking of Alternatives
Most of data in Multi-attribute decision making (MADM) problems are changeable rather than constant and stable. Therefore, sensitivity analysis after problem solving can effectively contribute to making accurate decisions. In this paper, we offer a new method for sensitivity analysis in multi-attribute decision making problems in which if the weights of one attribute changes, then we can dete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fundam. Inform.
دوره 132 شماره
صفحات -
تاریخ انتشار 2014